A conjecture concerning rational points on cubic curves
نویسندگان
چکیده
منابع مشابه
Rational points on curves
2 Faltings’ theorem 15 2.1 Prelude: the Shafarevich problem . . . . . . . . . . . . . . . . 15 2.2 First reduction: the Kodaira–Parshin trick . . . . . . . . . . . 17 2.3 Second reduction: passing to the jacobian . . . . . . . . . . . 19 2.4 Third reduction: passing to isogeny classes . . . . . . . . . . . 19 2.5 Fourth reduction: from isogeny classes to `-adic representations 21 2.6 The isogen...
متن کاملRational Points on Curves
This is an extended version of an invited lecture I gave at the Journées Arithmétiques in St. Étienne in July 2009. We discuss the state of the art regarding the problem of finding the set of rational points on a (smooth projective) geometrically integral curve C over Q. The focus is on practical aspects of this problem in the case that the genus of C is at least 2, and therefore the set of rat...
متن کاملRational Points on Cubic Surfaces
Let k be an algebraic number eld and F (x0; x1; x2; x3) a non{singular cubic form with coeecients in k. Suppose that the pro-jective cubic k{surface X P 3 k given by F = 0 contains three coplanar lines deened over k, and let U (k) be the set of k{points on X which does not lie on any line on X. We show that the number of points in U (k), with height at most B, is OF;"(B 4=3+") for any " > 0.
متن کاملA Conjecture on Rational Approximations to Rational Points
In this paper, we examine how well a rational point P on an algebraic variety X can be approximated by other rational points. We conjecture that if P lies on a rational curve, then the best approximations to P on X can be chosen to lie along a rational curve. We prove this conjecture for a wide range of examples, and for a great many more examples we deduce our conjecture from Vojta’s Main Conj...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: MATHEMATICA SCANDINAVICA
سال: 1954
ISSN: 1903-1807,0025-5521
DOI: 10.7146/math.scand.a-10394